Tcp Ip Protocol Suite Forouzan 2nd Edition Pdf Free Download --
DOWNLOAD ===> https://bytlly.com/2sZPA4
The Internet protocol suite, commonly known as TCP/IP, is a framework for organizing the set of communication protocols used in the Internet and similar computer networks according to functional criteria. The foundational protocols in the suite are the Transmission Control Protocol (TCP), the User Datagram Protocol (UDP), and the Internet Protocol (IP). Early versions of this networking model were known as the Department of Defense (DoD) model because the research and development were funded by the United States Department of Defense through DARPA.
The Internet protocol suite provides end-to-end data communication specifying how data should be packetized, addressed, transmitted, routed, and received. This functionality is organized into four abstraction layers, which classify all related protocols according to each protocol's scope of networking.[1][2] An implementation of the layers for a particular application forms a protocol stack. From lowest to highest, the layers are the link layer, containing communication methods for data that remains within a single network segment (link); the internet layer, providing internetworking between independent networks; the transport layer, handling host-to-host communication; and the application layer, providing process-to-process data exchange for applications.
The technical standards underlying the Internet protocol suite and its constituent protocols are maintained by the Internet Engineering Task Force (IETF). The Internet protocol suite predates the OSI model, a more comprehensive reference framework for general networking systems.
Initially referred to as the DOD Internet Architecture Model, the Internet protocol suite has its roots in research and development sponsored by the Defense Advanced Research Projects Agency (DARPA) in the late 1960s.[3] After DARPA initiated the pioneering ARPANET in 1969, Steve Crocker established a "Networking Working Group" which developed a host-host protocol, the Network Control Program (NCP).[4] In the early 1970s, DARPA started work on several other data transmission technologies, including mobile packet radio, packet satellite service, local area networks, and other data networks in the public and private domains. In 1972, Bob Kahn joined the DARPA Information Processing Technology Office, where he worked on both satellite packet networks and ground-based radio packet networks, and recognized the value of being able to communicate across both. In the spring of 1973, Vinton Cerf joined Kahn to work on open-architecture interconnection models with the goal of designing the next protocol generation for the ARPANET.[5][6] They drew on the experience from the ARPANET research community and the International Networking Working Group, which Cerf chaired.[7]
Nonetheless, for a period in the late 1980s and early 1990s, engineers, organizations and nations were polarized over the issue of which standard, the OSI model or the Internet protocol suite, would result in the best and most robust computer networks.[28][29][30]
The characteristic architecture of the Internet Protocol Suite is its broad division into operating scopes for the protocols that constitute its core functionality. The defining specification of the suite is RFC 1122, which broadly outlines four abstraction layers.[1] These have stood the test of time, as the IETF has never modified this structure. As such a model of networking, the Internet Protocol Suite predates the OSI model, a more comprehensive reference framework for general networking systems.[30]
Encapsulation is used to provide abstraction of protocols and services. Encapsulation is usually aligned with the division of the protocol suite into layers of general functionality. In general, an application (the highest level of the model) uses a set of protocols to send its data down the layers. The data is further encapsulated at each level.
The protocols of the link layer operate within the scope of the local network connection to which a host is attached. This regime is called the link in TCP/IP parlance and is the lowest component layer of the suite. The link includes all hosts accessible without traversing a router. The size of the link is therefore determined by the networking hardware design. In principle, TCP/IP is designed to be hardware independent and may be implemented on top of virtually any link-layer technology. This includes not only hardware implementations, but also virtual link layers such as virtual private networks and networking tunnels.
For example, the session and presentation layers of the OSI suite are considered to be included in the application layer of the TCP/IP suite. The functionality of the session layer can be found in protocols like HTTP and SMTP and is more evident in protocols like Telnet and the Session Initiation Protocol (SIP). Session-layer functionality is also realized with the port numbering of the TCP and UDP protocols, which are included in the transport layer of the TCP/IP suite. Functions of the presentation layer are realized in the TCP/IP applications with the MIME standard in data exchange.
The Internet protocol suite does not presume any specific hardware or software environment. It only requires that hardware and a software layer exists that is capable of sending and receiving packets on a computer network. As a result, the suite has been implemented on essentially every computing platform. A minimal implementation of TCP/IP includes the following: Internet Protocol (IP), Address Resolution Protocol (ARP), Internet Control Message Protocol (ICMP), Transmission Control Protocol (TCP), User Datagram Protocol (UDP), and Internet Group Management Protocol (IGMP). In addition to IP, ICMP, TCP, UDP, Internet Protocol version 6 requires Neighbor Discovery Protocol (NDP), ICMPv6, and Multicast Listener Discovery (MLD) and is often accompanied by an integrated IPSec security layer. 2b1af7f3a8